Application of Malliavin calculus to long-memory parameter estimation for non-Gaussian processes

نویسندگان

  • Alexandra Chronopoulou
  • Ciprian A. Tudor
  • Frederi G. Viens
  • Paul Malliavin
چکیده

Using multiple Wiener-Itô stochastic integrals and Malliavin calculus we study the rescaled quadratic variations of a general Hermite process of order q with long-memory (Hurst) parameter H 2 ( 1 2 ; 1). We apply our results to the construction of a strongly consistent estimator for H. It is shown that the estimator is asymptotically non-normal, and converges in the mean-square, after normalization, to a standard Rosenblatt random variable. To cite this article: A. Chronopoulou, C. A. Tudor, F. G. Viens, C. R. Math ematique, xxx (2009).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Malliavin calculus and analysis on Wiener space to long-memory parameter estimation for non-Gaussian processes

Using multiple Wiener-Itô stochastic integrals and Malliavin calculus we study the rescaled quadratic variations of a general Hermite process of order q with long-memory (Hurst) parameter H 2 ( 1 2 ; 1). We apply our results to the construction of a strongly consistent estimator for H. It is shown that the estimator is asymptotically non-normal, and converges in the mean-square, after normaliza...

متن کامل

Hurst Index Estimation for Self-similar processes with Long-Memory

The statistical estimation of the Hurst index is one of the fundamental problems in the literature of long-range dependent and self-similar processes. In this article, the Hurst index estimation problem is addressed for a special class of self-similar processes that exhibit long-memory, the Hermite processes. These processes generalize the fractional Brownian motion, in the sense that they shar...

متن کامل

Stein Estimation for the Drift of Gaussian Processes Using the Malliavin Calculus

We consider the nonparametric functional estimation of the drift of a Gaussian process via minimax and Bayes estimators. In this context, we construct superefficient estimators of Stein type for such drifts using the Malliavin integration by parts formula and superharmonic functionals on Gaussian space. Our results are illustrated by numerical simulations and extend the construction of James–St...

متن کامل

Self-similarity parameter estimation and reproduction property for non-Gaussian Hermite processes

We consider the class of all the Hermite processes (Z t )t2[0;1] of order q 2 N and with Hurst index H 2 ( 1 2 ; 1). The process Z (q;H) is H-self-similar, it has stationary increments and it exhibits long-range dependence identical to that of fractional Brownian motion (fBm). For q = 1, Z is fBm, which is Gaussian; for q = 2, Z is the Rosenblatt process, which lives in the second Wiener chaos;...

متن کامل

Convergence of densities of some functionals of Gaussian processes

We study the convergence of densities of a sequence of random variables to a normal density. The random variables considered are nonlinear functionals of a Gaussian process. The tool we are using is the Malliavin calculus, in particular, the integration by parts formula and the Stein’s method. Applications to the convergence of densities of the least square estimator for the drift parameter in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009